Signal filtering (Butterworth filter)

Here we apply a low-pass filter to temperature from the Satlantic LOBO ocean observatory moored in the North West Arm (Halifax, Nova Scotia, Canada).

butterworth_filter

First, we download temperature data from the LOBO buoy. The Code to do that was originally posted HERE. However, for convenience, below it is shown a shortened version of the code (note that in this instance we further converted the temperature data into a numpy array, which is required by the filtering function).

import urllib2
import StringIO
import csv
import numpy as np
from datetime import datetime

startdate = '20111118'
enddate   = '20121125'

# Read data from LOBO buoy
response = urllib2.urlopen('http://lobo.satlantic.com/cgi-data/nph-data.cgi?min_date='
                           +startdate+'&max_date='+enddate+'&y=temperature')

data = StringIO.StringIO(response.read())

r = csv.DictReader(data,
                   dialect=csv.Sniffer().sniff(data.read(1000)))
data.seek(0)

# Break the file into two lists
date, temp = [],[]
date, temp = zip(*[(datetime.strptime(x['date [AST]'], "%Y-%m-%d %H:%M:%S"), \
                 x['temperature [C]']) for x in r if x['temperature [C]'] is not None])

# temp needs to be converted from a "list" into a numpy array...
temp = np.array(temp)
temp = temp.astype(np.float) #...of floats

Now that we have data… we can proceed to design and apply the filter and make the plots…

import scipy.signal as signal
import matplotlib.pyplot as plt

# First, design the Buterworth filter
N  = 2    # Filter order
Wn = 0.01 # Cutoff frequency
B, A = signal.butter(N, Wn, output='ba')

# Second, apply the filter
tempf = signal.filtfilt(B,A, temp)

# Make plots
fig = plt.figure()
ax1 = fig.add_subplot(211)
plt.plot(date,temp, 'b-')
plt.plot(date,tempf, 'r-',linewidth=2)
plt.ylabel("Temperature (oC)")
plt.legend(['Original','Filtered'])
plt.title("Temperature from LOBO (Halifax, Canada)")
ax1.axes.get_xaxis().set_visible(False)

ax1 = fig.add_subplot(212)
plt.plot(date,temp-tempf, 'b-')
plt.ylabel("Temperature (oC)")
plt.xlabel("Date")
plt.legend(['Residuals'])

For more information, check the SCIPY Signal processing library.

Advertisement

1 thought on “Signal filtering (Butterworth filter)

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s